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ABSTRACT

In the last few years various methods of identifying struc-
tural dynamics models from modal testing data have ap-
peared. This paper presents a comparison of four of these al-
gorithms: the Eigensystem Realization Algorithm (ERA), the
modified version ERA/IX2 where DC indicates that it makes

use of data correlations, the Q-Markov Cover algtxithm, and
an algorithm due to Moonen, DeMoor, Vandenberghe and
Vandewaile. The comparison is made using a five mode
computer model of the 20 meter Mini-Mast truss structure at
NASA Langley Research Center, and various noise levels are
superimposed to produce simulated data. The results show

that for the example considered ERA/DC generally gives
the best results; that ERA/IX2 is always at least as good as
ERA which is shown to be a special case of ERA/DC; that

Q-Markov requires the use of significantly more data than
ERA/IX2 to produce comparable results; and that in some
situations Q-Markov cannot produce comparable results.

INTRODUCTION

In recent years several time domain system identification
techniques from the control theory community have become
useful in structural modal testing, and still others have
appeared which might offer advantages for modal testing.
The purpose of this paper is to perform a comparison of
four of these closely related identification methods on a
typical structural dynamics identification problem. The aim
is to make an initial determination of what the advantages
and disadvantages of each method are, and under various
different conditions, determine which method is best to use.

In recent years, the Eigensystem Realization Algorithm 1,2
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has seen considerable use on flexible spacecraft identifica-
tion. This is one of the four closely related algorithms com-
pared. An extension of this algorithm using data correla-
tion (ERA/I_ is also studied,a The third approach is based
on Q-Markov cover theory originally developed for model
reduction. 4,5 It was generalized to identification using both
white noise input tests and impulse input tests in Ref. 6, and
then finally reformulated for tests using either type of input
in Ref. 7. Although obtained from a different starting point,
the resulting mathematical algorithm bears a family resem-
blance to. ERA/DC. The fourth algorithm studied is that of
ReL 8 which allows direct use of general input tests. This
algorithm will be referred to as MDVV, using the first letter
of each author's last name. A mathematical description of
each algorithm is given in Appendix 1.

THE TEST EXAMPLE

One must use a mathematical or computer model rather
than a real physical structural test article to compare the
performance of the identification algorithms, since one must
know what the correct identification result is. Here we pick a
model obtained by finite element analysis of the Mini-Mast 9
structure illustrated in Fig. 1. This model is sufficiently

complex to be a reasonable test of identification performance.
The model for testing considers the first two bending modes
as the lowest frequency modes with essentially identical
frequencies, the first torsional mode, and the second two
bending modes, again with essentially identical frequencies.
Table 1 gives these frequencies and the associated damping
expressed as the negative of the real part of the elgenvalues.
The mathematical model is given in Appendix 2.

Table 1

Mode Damping Frequency
No. Factor rad/ sec HZ

1 0.09059 5.032 0.8008
2 0.09066 5.036 0.8014
3 0.32907 27.420 4.3640
4 0.38352 38.351 6.1038

5 0.38683 38.682 6.1565



The mathematical model considers two inputs and two
outputs. The outputs are from nonorthogonal displacement
sensors at the top of the structure, and the inputs are two
torque wheels for the x and y axes, as shown in Fig. 1.

THE APPROACH USED IN THE COMPARISON

It is not a simple matter to determine a set of tests
that constitute a reasonable comparison of the different
identification approaches. Each approach has a somewhat
different set of parameters that the user can adjust in order

to get good performance. It would be of interest to optimize
these parameters so that one compares in each case the
best results each algorithm can produce. However, usually
it is a matter of experience and intuition to decide how
to make these parameter choices. In the case of ERA,
methods based on perturbation theory have recently become
available which help the ERA user know the accuracy of
his identification results, and hence help him to adjust these
parameters in order to improve the accuracy. 1°-1_ Similar
results have been generated for ERA/I)C and the Q-Markov
cover approaches, and will be reported in the literature. No
attempt is made here to optimize these parameter choices.
The choices made ate as follows.

In Q-Markov, the measurement matrix is necessarily

square, but in ERA and ERA/DC the matrix can be rectangu-
lax, and in fact certain results from other sources 12 suggest
that rectangular data matrices for ERA give better results.
Nevertheless, for ease of comparison, we restrict ERA and
ERA/DC to square data matrices and recognize that their
identification accuracy may be degraded. Also, in ERA/IX2
there is considerable freedom in the cht_ice of the correlation

matrix H(q), but here we res_ict ourselves to the special case
in which H(q) = H(q)If(O) (see Appendix 1). During the
comparison the size of the singular value decomposition ma-
trix for each algorithm is kept the same (at 120x120), with
the idea that the singular value decomposition in each al-
gorithm is the most time Consuming step. HoWever,=_S
makes the comparison of ERA with ERA/DC and with Q-
Markov somewhat biased against ERA. Both ERA/DC and
Q-Markov involve a parameter, s and d respectively, which
determines the upper limit on a possibly large summation of

products that does not appear in ERA. Hence, with the same
computation time, ERA could have used a larger data matrix
which could produce improved identification results. Some
computer runs were made to study this. Appendix 1 gives

a summary of each of the algorithms considered. Note that
equal values of the parameters s and d in ERA/DC and Q-
Markov imply essentially equivalent amounts of computation
in setting up the respective data matrices.

The test example considered is a multiple-input and

multiple-output one. As a result, it is of interest to have a
scalar measure of the accuracy of the identification results

to aid the comparisons of the various approaches. We
accomplish this by considering the maximum singular value
of the transfer function matrix of the identification error as a
function of frequency. In other words, we take the maximum
singular value at each frequency, of the true transfer function

matrix of the computer test example minus the corresponding
transfer function matrix of the identified system model. The
symbol dr is used to indicate maximum singular value. This
scalar measure gives a simple way to express the combined
error in natural frequencies, damping and mode shapes of
the identified model. Note that this error criterion is used

to design the model uncertainty weighting matrix for Hot
control design in Ref. 13.

RESULTS

Noise Free Results

Figure 2 gives identification results for, ERA, ERA/DC,
and Q-Markov when the pulse response data is noise free.
Figure 2a gives dr of the true system transfer function matrix
for comparison, and the dr of the error transfer function

matrix for ERA, and for ERA/DC with the parameters s
chosen as 200, corresponding to 260 data points. The smaller
the values of _"of the error transfer function matrix curves,
the better the identification results. Figure 2a shows that
both ERA and ERA/I:)C give essentially perfect identification
with the errors in the identification limited to the magnitude
of numerical round-off. Figure 2b repeats 2a but for the Q-
Markov algorithm. The similarity of the true and the d = 500
curves in the second and third peaks means that these modes
are not identified.

We observe that the Q-Markov algorithm requires the use
of very large data sets (e.g. d significantly greater than 2000)
before it can approach the accuracy of ERA(with 8 equal
59) and ERA/DC(with s equal 200) on noise free data. The

same observation can be seen in a different manner ha Fi_g.
2c. Only the first ten singular values should be nonzero, but

the remaining singular values for the Q-Markov algorithm
do not reduce to the level of numerical round-off until d is

very large.

Interpretation of Plots of Maximum Singular
Value of the Error Transfer Function Matrix

We are using the maximum singular value of the model
error transfer function matrix, as a function of frequency,
as our scalar measure of the model error. It is of interest

to interpret these plots in terms of errors of frequency and
damping of the modes in the model, in Figure 3a we show
the maximum singular value of the erro_sfe_ function
matrix when the model and the true system axe identical
except that the damping (i.e. the negative of the real part
of the eigenvalues) of the first two modes is decreased by



0.1%, 1%, and 10%. The same computation was repeated
using frequency error instead of damping error. When the

frequency errors are 10-s%, 10-2%, and 10-1% we obtain

Fig. 3b which looks nearly identical to that of Fig 3a but with

slightly lower peaks. Hence, the e(w) peak is approximately
100 times more sensitive to frequency than it is to damping

error, and the signatures of such errors are very similar,

The Relationship Between ERA and ERA/DC

In Appendix 3A we prove that ERA is a special case of
ERA/DC in the following sense. Use the same Hankel matrix

of pulse response data H(0) in both algorithms. Pick the

,_,pecial case of L/(0) = Pv(0) in equation (1.5) of Appendix
iB for the singular value decomposition matrix in ERA/DC.
Pick the same order k for the desired identified model from

each algorithm. Then the pulse response history of the kth
order ERA model is identical to the pulse response of the kth

order ERA/De model, for all choices of k. independent of

the true order of the system. Hence the identified models are
identical to within a linear transformation of state variables.

Figure 2a shows ERA]I_ with s = 200. If s is set to 59

in order to comply with the above assumptions in comparing
ERA/De to the ERA results, the dr error curve in Fig. 2a is

similar to those shown, with differences again on the level of

numerical round-off in the computations. This is consistent
with the above theoretical resulL

Note that unlike ERA, ERA/De has the ability to in-

crease the number of Markov parameters used in the iden-

tification, without increasing the dimension of the singular

value decomposition matrix, simply by increasing the hum-

her of columns in H(0). Since storage limitations constrain

the size of the decomposition matrix, this extra freedom can

be an important advantage of ERA/De

The Relationship Between ERA and Q-Markov

Algorithms

The relationship between ERA]DC and the Q-Markov

cover algorithm is developed in Appendix 3B. ERA/De uses

a singular value decomposition of a matrix/2(0) in equation
(1.6) to produce its realization, while Q-Markov uses singular

value decomposition of the matrix Dq in equation (1.11).

Appendix 3B shows that Dq can be produced from U(0)

by setting certain Markov parameters to zero in L/(0) (see

equations 3.8 and 3.9 in Appendix 3B).

As the parameter d in Q-Markov increases the number of

Markov parameters set to zero becomes a smiler percentage
of the total number of Markov parameters included in the

identification. They also refer to later sample times which

allows for more decay of the pulse response.

The ERA/IX2 results for s = 59 and s = 200, which
both have errors limited to the level of numerical round-

off, suggest that ERA/DC gives accurate system realization
from noise-free data for all r, s above the values needed

to give row and column numbers of the Hankel matrix that

are greater than the system order. The Q-Markov algorithm
results suggest that it produces an accurate realization of

the input-output relation only asymptotically as the amount

of data used tends to infinity, i.e. d _ co. This is

consistent with the analytical results in Appendix 3B; once
d is sufficiently large that the Markov parameters that are

set to zero in the Q-Markov algorithm(equations 3.8 and

3.9) become negligible, then Q-Markov produces results

equivalent to ERA/DC with model errors reduced to the level

of numerical round-off. This suggests that ERA/DC should

give superior performance to Q-Markov Cover for all finite
data sets.

A Note on the Computational Effort of Each

Algorithm

The ERA, ERA/De, and the Q-Markov Cover algorithms

are compared by constraining the singular value decomposi-
tion in each case to be of the same dimension, with the idea

that the effort involved in this decomposition dominates the

computational effort of the algorithm. Such a decomposi-
tion is roughly a cubic function of the matrix dimension, x4

ERA/DC and Q-Markov both require an additional multipli-
cation of matrices to obtain the matrix which is decomposed.

Such a multiplication is generally cubic in the matrix di-

mension as well. However, the special structure of the data

matrices allows one to generate a recursive procedure to sim-

plify the computation. It produces a computation count that

is quadratic in the matrix dimensions, so that the decompo-
sition does in fact dominate.

It is difficult to compare computational effort of the dif-
ferent identification methods, because the details of the pro-

gramming can be significanL Here we cite the CPU times
used in running the different algorithms. All computations
were carried out using MATLAB on a Micro VAX 3200

workstation, running the high noise case discussed below.

Table 2 gives the results for n = 120 (the number of rows

of llq, or H(c 0 in equation 3.9 of Appendix 3B, or H(0))
in all cases, and for various values of 8 or d where s + 1 and

d + 1 are the number of columns of Markov parameters in

H(0) and H(d) respectively. The actual number of columns

is 2(s + 1) and 2(d+ 1), because the system has two inputs.

Increasing s from 100 to 1500 in ERA]De fncreased

the CPU time by 24 seconds which represents a 26%
increase in run time to include roughly 15 times as much

data. The Q-Markov algorithm took slightly longer than

ERA/De for corresponding values of d and s. Also as d
is increased from 100 to 1500 the CPU time increased by

3



40seconds representing a 41% increase in run time. Note,

however, that a much larger value of d is required in Q-

Markov than of s in ERA/DC for comparable identification
accuracy. Q-Markov with d = 1500 and ERA/IX_ with

8 = 500 give roughly comparable identification results, and

Q-Markov takes 38% longer to run. We conclude that, at

least for the programming implementations of the algorithm

used, ERA/IX_ has a substantial advantage over Q-Markov

in computer time needed.

Table 2. Comparison of CPU Times for ERA, ERA/DC,
and Q-Markov Cover (n = 120 in all cases)

s = 100

92

d = 100
98

ERA

8 = 59 s = 79 8 = 99

90 120 150

ERADC

s=300 8=500 s=1000 s=1500

96 100 110 114

Q-Markov
d=300 d=500 d=1000 d=1500

110 117 128 138

The ERA algorithm requires the singular value decompo-

sition of a rectangular Hankel matrix H(0) rather than of a

square matrix such as H(0)H'/'(0), one dimension of which

is smaller. The increased dimension proportional to (s + 1)

causes memory problems which prevented use of s = 300
or above. In order to include additional data, one must con-
vert to ERA/DC above this value. Since the CPU time in

ERA is proportional to (s + 1) we would exit a cPu

time of 2252 seconds for s = 1500 if memory problems had

not prevented such a computation. We conclude that ERA

suffers from memory limitations, and that ERA/DC is to be

preferred. Since ERA is a special case of ERA/DC in the

prescribed sense given above, ERA/DC can always give as

good results as ERA, and the extra parameters in ERA/DC
can be optimized (e.g. by use of the methods of Refs. 10-12)

to give better results.

Low Noise Results

Figure 4 introduces a low noise level in the data. The
noise is modelled as additive, white, zero-mean and Gaussian

with standard deviation equal to 8 x 10 -°. Note that the

signal initial roo t mean square value is 1 × 10 -6.

Figures 4b and 4d again show that the Q-Markov method

needs a long data set, e.g. d = 1500, before all modes

are clearly identified. Figures 4a and 4c show that the
same level of identification error is achieved by ERA/DC

with many fewer data points, e.g. for s = 400, a number
too small for successful identification with Q-Markov. It

is interesting to note in Figs. 4a and 4b that the drop in

the singular values which is an indicator of the true system
order, becomes worse (i.e. smaller) as either d or s is

increased. ERA/DC is again better for corresponding values

of d and 8. This can be explained by examining the time

constants for decay of each mode. For the highest frequency

mode, four time constants is 10.34 8ec which corresponds

to a decay of the amplitude of the mode to 0.018 of its

original value. When 8 = 800, the last data entry in the
ERA/DC Hankel matrix corresponds to 25.8 sec, well after

the highest frequency mode has disappeared into the noise

level. Including more data points adds only noise and no

signal as far as identification of the high frequency modes arc

considered. This added noise is reflected in higher singular

values associated with noise, i.e. singular values 11 and
above. On the other hand, four time constants of the lowest

frequency mode is 44.16 sec, and adding data above s = 800,

i.e. after 25.8 sec, still helps the identification of this mode,

as is reflected in the increase of the first singular value with

8. Obviously, there are different optimal values for s for

different modes, generally with smaller values of 8 for higher
frequency modes.

Figure 4e shows that both ERA/DC and Q-Markov using
large data histories associated with 8 = 800 and d = 2000,

somewhat outperform ERA with its much shorter 119 point

data history.

High Noise Results

Figure 5 repeats Fig. 4 but with a noise level increased by

a factor of 10. Figure 5b shows that the Q-Markov algorithm

fails to exhibit the drop in singular values at the true system
order of 10, for all choices of d. On the other hand, ERA/DC

exhibits a drop at the true system order for lower values of 8.

One can interpret this in terms of the damping in the system.

The Q-Markov algorithm appears to inherently need more

data points than ERA/DC, but as more data points are taken

the decay of the true system modes causes the extra data for

times after significant decay has occurred to have poor signal

to noise ratio. This increases the level of the singular values
associated with noise, and decreases the step change in the

singular values at the true system order.

The comparison of the methods in Fig. 5e shows that

ERA/DC using 8 = 400, and Q-Markov using roughly four

times as much data with d = 1500, produce comparable

results.

High Damping Results

We consider the same high noise situation as in the

previous section, but change the system by increasing the

damping in each mode of the system. The new real parts of

the eigenvalues are -0.6, -0.6, -1.5, -1.8 and -1.8 respectively.



This corresponds to decreasing the time constants for the
envelope of decay of each mode from 11.04, 11.03, 3.04,
2.61, 2.59 to 1.67, 1.67, 0.67, 0.56, 0.56.

Because of the fast decay, lower values of s are appro-
priate in ERA/DC so as not to include data after complete
decay of the signal. ERA/DC succeeds in identifying all
modes. Figure 6a is somewhat congested in the neighbor-
hood of the second and third peaks, but one can observe that
when s increases from 60 to 100 the model error for these

peaks gets worse while the model error for the first peak, cor-
responding to the first two modes that decay more slowly,
remains essentially unchanged. Thus, s : 100 is beyond the
optimal value for the high frequency modes.

Figure6b shows thattheQ-Marker coveralgorithmis

essentiallyunabletoidentifyorgivesverypooridentification

ofthethreehighestfrequencymodes.UnlikeERA/I_, the

algorithmneedsadlargeenoughthattheMarkovparameters

thataresettozeroeitherhavesufficientlysmallvaluesdue

to thedecayof thesignalor areinsignificantinnumber

relativeto thetotalnumber of otherMarker parameters.
Neithersituationoccursbefored becomes so largethat

increasingd simplyaddsnoisewithoutaddingsignal.The

bestcompromiseappearstobe d = 200,but thisisstill

insufficientforgood identificationof thesemodes. In this

highnoiseandfastdecaysituation,ERA/DC cansuccessfully

identifyallmodes andQ-Marker Covercannot.

Q-Markov Cover Results Using Random Input

Response

The Q-Marker Cover algorithm has the potential ad-
vantage that it can use random input response histories di-
rectly, rather than using data from such an input to obtain
the Markov parameters and then using these to perform the
identification as described above. Figure 7 shows the results
for numerical tests with noise-free data. The method iden-

tities the first two modes with comparatively poor accuracy,
and totally fails to identify the remaining three modes. Go-
ing above d = 1500 produces very modest improvement.
Averaging a set of runs to obtain Marker parameters and
covariance parameters can produce additional modest im-
provement. At least for the example considered, this poten-
tial advantage of Q-Marker does not appear to be realizable
inpractice.

MDW Results

In Fig. 8 we turn to the MDW algorithm which is an-
other algorithm that can use random input responses without
the need to obtain Marker parameters first. In fact, it can

use any sufficiently rich inputs. Like ERA, this algorithm
uses a data matrix that need not be square. The originator of

the algorithm suggests use of a rectangular matrix. Also, the

matrix involved, which undergoes a singular value decom-
position, contains not only the measurement data but also
the input function. This means that one has the freedom to

use general inputs as long as they are sufficiently rich, rather
than obtaining impulse responses. This benefit is obtained at

the expense of, in our case, doubling the size of the singular
value decomposition maa'ix for the same amount of data.

In placeofthe 120x120matricesusedinallprevious
computationsthematrixsizeforH intheserunsischosen

as80x160,i.e.a rectangularmatrixwitha roughlycompa-

rablecomputation time. The inputs were taken as random,
producing displacement sensor outputs shown in Fig. 8a.
Figure 8b gives the singular values of H. The first 40 are
associated with the random input functions, and the next 10
are associated wilh the system dynamics. Experience indi-
cates the input signals need to be very rich to obtain good
results. Noise free results are given as well as results with
three noise levels. The two higher noise levels of 5 × 10-7
and 5 X 10-8 correspond to the high and low noise level of
the previous computations, and the third level is associated
with a decrease by another factor of 10.

Like ERA and ERA/DC the identification error is on the
order of numerical round-off error in the no-noise ease, Fig.
8c. Figure 8d indicates somewhat worse error behavior than
the other algorithms when noise is present.

CONCLUSIONS

Some of the conclusions suggested by the numerical test
results are as follows:

1. Of the four algorithms tested ERA/DC gives the best
results.

2. ERA is shown to be a special case of ERA/DC in the
sense that in the no noise case and using the same
Hankel matrix for each method, the models produced by
the two algorithms give identical input/output relations
for all model orders chosen (i.e. for all choices of the
number of nonzero singular values retained). The state
space realizations for the models can be different, and
there can be different numerical round-off properties,
but otherwise, they both give the same input-output
relationship.

3. They both produce models with identical input-output
relations when each uses the same Hankel matrix, but

ERA/DC has a computational advantage since it produces
a smaller singular value decomposition for rectangular
Hankel matrices. In practice, memory limitations asso-

............. the singular value decomposition dictate the
maximum size of the rectangular Hankel matrix in ERA,
based on both the shorter and longer dimensions of the
matrix. In ERA/I)C the singular value decomposition is

of a square matrix whose dimension is the shorter dimen-



sion of the Hankel matrix. This allows ERA/DC to give
significantly better results in practice.

4. The Q-Marker Cover algorithm can be obtained from

ERA/DC by setting a triangular set of Marker parameters

to zero in the data matrix, and then using a different

realization. As a result, Q-Marker is the only algorithm

tested here that needs large sets of data to obtain accurate

identification from noise-free data. The setting of these
Marker _e_rs to zero can be insignificant if they

apply to times after all transients have decayed, or if
enough Marker parameters are included that the set

becomes insignificant. Hence, Q-Marker required much

longer sets of data to be used (compare s and d values
in the figures) in order to obtain results comparable
to those of ERA/DC. Also, situations can arise where

the speed of decay of the transients prevents Q-Marker

from identifying a mode that ERA/I_ can successfully
identify.

5. The Q-Marker Cover algorithm has the poCen_ advan-

tage that in one of its forms it can accept random input
response data directly. ERA and ERA/DC, as well as

another form of Q-Marker, require computing pulse re-
sponse histories from the data associated with the actual

inputs, =before the algorithms can be applied. Our exam-

ple run with Q-Marker using random input response data

directly, gave significantly worse results than the other

algorithms. This suggests that the potential advantage is

not actually an advantage in practice.

6. The MDVV algorithm can directly use data from any

sufficiently rich input signal, but care must be exercised

to insure a well conditioned full rank input signal. This

advantage is counterbalanced by the disadvantage of

requiring a singular value decomposition of a larger
matrix than all of the above algorithms when the same

amount of data is used. Results appear to be inferior to
the other methods.

We reiterate that the conclusions presented here arc based

on testing only one structural dynamics example, and that

the comparisons are made without fully optimizing all the

parameters of any of the methods. In practice, the variance

and bias computation methods developed using perturbation

methods (Refs. 10-12) can be used with experimental data

to help the user of ERA, ERA/DC, or Q-Marker Cover to

optimize the parameters of these methods.
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APPENDIX 1

MATHEMATICAL DESCRIPTION OF THE

IDENTIPICATION ALGORITHMS

¶

A. ERA Algorithm

1. Form the Hankel matrix

It(j- 1) = Yj+I j+2 ... Yj+,+I (1.1)
i : "'.

\Yi+, Yi+,+, ... Yi+,+,/

where Y/ is the ith Markov parameter of the pulse

response history.

2. Form the singular value decomposition of H(0)

H(0) = UEV "/" (1.2)

3. The system matricesof the ERA identified kth order

discrete time model are given as

Ak = Ekl/2U_t H(1)VkS_I/2

=r, /'vrf.,,, (1.3)

B. ERA/DC Algorithm

1. Form the Hankel matrix as in equation (1.1)

2. Compute R(q)

R(q) = H(q)ttT(o) (1.4)

3. Form block correlation matrix

U(q)=

R(q) R(q+7) ... R(q+37) )R(q+7) R(q+27) ...

\R(q -_ o71 ...... R(q + (a + fl)7)
(1.5)

4. Form the singular value decomposition of H(O)

U(O) = UEV T (1.6)

5. The ERA/DC identified kth order discretetime model is

At = E_'I/2U_t H(1)VtE_ "ID

/ H(0) \

B.=r:_'l'vr[ H(7) }
\H(_)/

(x.z)

C. Q-Marl_v Cover Algorithm

1. Calculate X i

Xi = Yl(d,i)= EYk+iY_/'_ (1.8)
k=0

The matrix Et is the upper left hand kxk partition of

E containing the k largest singular values along the

diagonal. MatricesUk and Vt areobtainedfrom U and

V by retaining only the k columns, i.e. singular vectors,

associated with the singular values retained in Ek. Matrix

E: is a matrix of appropriate dimension containing l

columns, that is all zero except that the top Ixl partition

is an identity matrix. F-nnis defined analogously.

here Yi is the pulse response at time i.

2.Form Hq

P_ "- (:11

-1 g/



_ 0
//_= Y1 14

Y_i_1...

3. Compute Dq

,,,

..°

gq= Y2

(1.9)

D, (1.lO)

4. Form thesingular value decomposition ofD_

D_ = UZV 'r (1.11)

uk+i uk+i+l ... uk+i+j-i
Yk+i Yk+i+l .,. Y_+i+j-I

uk+i+l u}+i+2 • .. u_+i+j
Yk+i+l Yk+i+2 ... Yk+i+j

uk+2i-1 uk+2i •.. Uk+j+2i-2

Yk+2i-1 Yk+2i ... Yk+j+2i-2

//1) (1.15)//= //2

where u_ and Yk denote l dimensional input vector and

m dimensional output vector at time k.

2. Form the singular value decomposition of//

5. Form Pk and partition it

°)P, = u,_._I2. P, = 01 . o, e w "_k

-1

6. Form P and P

(1.12)

7. The Q-Markov identified kth order discrete model sys-

tem matrices are

A/_ = p+/3, Bk = Oo, Ck = P+Mq (1.14)

where + indicates the Moore-Penrose pseudoinverse

D. MI)W

1. Form //1, H:¢and H

//1 "-"

uk lZk+l ... uk+i-1
Yk Yt+l ..- Yk+,/- 1

Uk+l Uk+2 --- Uk+j

Y_+I Y_+_ ... Y_+j

u_+i-1 u_+i ... u_+j+i-2
Y_+i-I Y_+i ... Yk+j+i-2

(Ull U12)(_1 00)vT (1.16)Lr = ur'vr = k,u21 tr2_

herethesizesoftlmmatricesare

size(U11) = (mi + li)

size(U12) = (mi + Ii)

size(U21) = (mi + li)

X (2mi + n)

x (21i - n)

x (2mi + n)

size(U22) = (mi + li) X (21i - n)

size(S11) = (2m/+ n) x (2rrd + n)

3. Form the singular value decomposition of U_12U11S11

U_12U11S11= [U q Ut] ( _q 00)(Vq_l_%)(1.17)

where Uq is a (2li - n) × n matrix.

4. The identified nth order model

u_r,u_r12U(m+l + 1: (i+ 1)(m+l),:)S_

[f(mi + li + m+ 1: (m+ l)(i + 1),:)S)

U(rm+li+ 1 : rrd+li+ m,:)S
(1 S)

APPENDIX 2

MINI-MAST MODEL

= Ax + Bu

y= Cx (2.1)



m

Colmms i through 5

-0.0092 -0.0001 -5.0354 0.0000 0.0009
0.0001 -0.0891 -0.0001 5.0316 0.0131

5.0354 0.0002 -0.0921 -0.0001 -0.0014
0.0000 -5.0316 0.0001 -0.0920 -0.0154

-0.0032 -0.0021 0.0035 0.0074 -0.3251

0.0040 -0.0076 -0.0040 0.0027 27.4201

0.0247 -0.0954 -0.0269 -0.1040 0.0015

-0.0958 -0.0251 0.1042 -0.0275 0.0038

0.0266 -0.1015 -0.0262 -0.0997 -0.0033

-0.1020 -0.0263 0.1005 -0.0257 0.0149

- _a"UkZt(Z_"'U_'_H(1)Vk)JV_tF-,m (3.1)

Construct the (j + 1) Markov parameter of the kth order

model from ERA/DC using the H(0) = R(0) = H(0)HT(0)

special case. Use U, 13, and V for the singular value

decomposition of H(0) as in (3.1), and use 0, _, P" for the

singular value decomposition of equation (1.6) for ERA/IX_.

rhen these decompositions are related by

Columns

-0.0015

0.0153

0.0012

-0.0141
-27.4201

-0.3330

0.0028

-0.0132

-0.0028

-0.0027

Bm

0.00235

-0.00201

-0.00235

-0.00201

-0.00011

0.00011

0.00167

-0.00091

0.00163

-0.00089

6 through 10

0.0055 -0.0200 -0.0099 0.0374

-0.0211 -0.0061 0.0386 0.0108

0.0101 -0.0377 -0.0055 0.0205

0.0388 0.0108 -0.0218 -0.0065
-0.0094 0.0177 0.0111 -0.0252

-0.0099 0.0224 0.0112 -0.0212

-0.3762 0.5972 38.3637 -0.1010

-0.5956 -0.3790 -0.0466 38.6603

-38.3637 0.0464 -0.3912 -0.5969

0.1011 -38.6603 0.5986 -0.3943

C Im

-0.00200 0.01119 -0.00911

-0.00236 0.00402 0.00762

0.00200 0.01122 -0.00914

-0.00236 -0.00402 -0.00764

-0.00025 -0.00917 -0.00931

0.00025 -0.00918 -0.00933

0.00095 -0.00043 -0.00243

0.00155 -0.00245 0.00196

0.00092 0.00047 0.00242

0.00151 0.00239 -0.00199

= U, l_,- _E T, _-- U (3.2)

Substitutingthesedecompositionsinto(1.7),producesthe
realization

= u II(o)E,,, (3.3)
G-  Ukr k

whose (j+ 1)Matkovparameteris

Yj+I =_'U_k(_'kl u_kH(1)vzTU'r Uk_'kl)j

X Sk'l_k _V'J',_, (3.4)

and afternotingthat

VSZ Ukr,; ' = (3.5)

One oblainsequation(3.1),whichcompletestheproof.

APPENDIX $

COMPARISON OF IDENTIFICATION

ALGORITHM

A. Comparison of ERA and ERA/DC

We can show that if one uses the same Hankel matrix

H(0) in ERA and in the special case of ERA/DC with

H(0) = R(0), then the resulting realizations, for any chosen

system order, have identical pulse response histories. In

other words ERA is a special case of ERA/DC in the

B. Comparison of H(0) in ERA/DC and Dq in

Q-Markov

ERA/IX: creates its realization from a singular value

decomposition of /d(0). We pick the special case H(0) =

R(0) = H(0)H'r(0) in this paper. The i, jth partition of

ld(0) can be written as

k=0

i,j= l,2,...,r+ l (3.6)

The Q-Markov algorithmobtainsitsrealizationfroma sin-

sense that the realizations produced have the same Markov gular value decomposition of the symmetric matrix Dv. The

parameters, but they can have different choices for state i, jth partition for i > j can be written as
variables.

d-I-, J-t

The (j + 1) Markov parameter of the kth order model

obtained by ERA in equation (1.3) is

[z),],,=EY,
k=0 k=0

d+l Y-'



d+l

k=j
d+l-j

= E _+k_J +k
k=O

i,j = 1,2,...,q (3.7)

Comparison of these two formulas shows that if we pick

a = d. and q = r + 1, then the first row partition of Dq,

i.e. for j = 1, is identical to the first row partition of _/(0).

However, for larger j there are j - 1 terms missing in the

summation for [Dq]q that are present in ['_(O)]ij.

An alternative way to view the difference is to write the

following matrix expressions

/4(0) = H(o)HT(o)

where

[Dq],;= (H(0)H_'d),i for i _ j (3.8)

Y, Ys ... Yd+2-q ... Yd+1

: : •

Yq+l -.. Yd+ l 0 ...

(3.9)
and H(o) is givenin equation (1.1). Thus, the U(O) differs

from Dq by setting the lower right triangular set of Markov

parameters in the H(O) to zero in order to produce Hd.

Tip Plate ir_ x, y Torque Wheels

Kaman Sensors .__.

)
)
)

)
/

t2
X y

/

le// ,////1A

Tip Plate

y Torque Wheel

__× Torque Wheel

Kaman Dlsplacoment Sensors

20.16 Meters

Figure 1 Mini-Mast test article showing the x and y torque wheel locations and

the A, B displacement sensor locations and their axes on the bay 18 tip plate.
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Figure 3 Maximum singular value of the model error transfer function matrix as a
function of frequency: (a)for various damping errors in the first two modes,

(b)for various frequency errors in the first two modes.
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(e)Comparison of maximum singular value of true transfer function matrix
and of the model error transfer function matrices for ERA, ERA/DC (s =

800),and q-Markov (d = 2000).
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Figure 5 High noise identification results:

(a)Singular values of measurement matrix for ERA/DC identification for var-
ious s.

(b)Singular values of measurement matrix for q-Markov identification for
various d.

(c)Maximum singular value of the ERA/DC model error vs. frequency for
various s.

(d)Maximum singular value of the Q-Markov model error vs. frequency for
various d.

(e)Comparison of maximum singular value of true transfer function matrix
and of the model error transfer function matrices for ERA, ERA/DC (s =

400), and Q-Markov (d = 1500).
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